Reflector lamp
A light source (filament or arc) is placed at or near the focus of a reflector, which may be parabolic or of non-parabolic complex shape. Fresnel and prism optics moulded into the headlamp lens refract (shift) parts of the light laterally and vertically to provide the required light distribution pattern. Most sealed-beam headlamps have lens optics.
Reflector optics
Starting in the 1980s, headlamp reflectors began to evolve beyond the simple stamped steel parabola. The 1983 Austin Maestro was the first vehicle equipped with Lucas-Carello's homofocal reflectors, which comprised parabolic sections of different focal length to improve the efficiency of light collection and distribution.CAD technology allowed the development of reflector headlamps with nonparabolic, complex-shape reflectors. First commercialised by Valeo under their Cibié brand, these headlamps would revolutionise automobile design.
The 1987 US-market Dodge Monaco/Eagle Premier twins and European Citroën XM were the first cars with complex-reflector headlamps with faceted optic lenses. General Motors' Guide Lamp division in America had experimented with clear-lens complex-reflector lamps in the early 1970s and achieved promising results,[50] but the US-market 1990 Honda Accord was first with clear-lens multi-reflector headlamps; these were developed by Stanley in Japan.
The optics to distribute the light in the desired pattern are designed into the reflector itself, rather than into the lens. Depending on the development tools and techniques in use, the reflector may be engineered from the start as a bespoke shape, or it may start as a parabola standing in for the size and shape of the completed package. In the latter case, the entire surface area is modified so as to produce individual segments of specifically calculated, complex contours. The shape of each segment is designed such that their cumulative effect produces the required light distribution pattern
Modern reflectors are commonly made of compression-moulded or injection moulded plastic, though glass and metal optic reflectors also exist. The reflective surface is vapour deposited aluminum, with a clear overcoating to prevent the extremely thin aluminium from oxidizing. Extremely tight tolerances must be maintained in the design and production of complex-reflector headlamps.